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Abstract

This report presents the experimental plan of a
study to be conducted at Mars Desert Research Station
(MDRS). We consider the problem of scheduling a set of
(experimental and logistic) operations in a constrained
context such as the MDRS. When taking uncertainty
into account when designing models, a robust solution
can be obtained such that it minimizes the probabil-
ity of a failure in the mission global objectives. Based
on real operations at MDRS, we will investigate dif-
ferent mathematical formulations for both determinis-
tic and robust stochastic modelings of the problem, the
later taking uncertainty into account. In order to solve
the deterministic problem, optimal and heuristic algo-
rithms will be designed. Our principal goal is to show
how the later can be modified in order to take stochas-
ticity into account while maximizing the probability of
mission completion. Finally, computational experimen-
tations will compare both approaches and highlight good
practices for the best of future real operation planning
on Mars and similar environments.

1 Introduction

The problem of scheduling a set of operations in a
constrained context such as the Mars Desert Research
Station (MDRS, Figure 1) is already a non-trivial
problem, even in its classical deterministic version. It
should be seen as a generalization of the well-known
job-shop scheduling problem, which is not only NP-
complete [4] but has also the reputation of being one
of the most computationally demanding combinatorial
optimization problems [1].

At the MDRS, computing an optimal schedule for
all the operations becomes significantly less attractive

Figure 1: The Mars Desert Research Station.

as soon as some problem data, such as the manipula-
tion time of some experiments, reveals to be different
from its predicted exact value. In a constrained envi-
ronment with shared resources and devices, such devi-
ation can propagate to the remaining planned opera-
tions, eventually leading to a global infeasibility (e.g.
a crew member cannot achieve all its planned experi-
ments).

In this report, we present the experimental study to
be conducted at MDRS. We will propose and compare
several different mathematical formulations of the op-
erational problem faced at MDRS. Namely, the time-
constrained scheduling of the set of activities, or jobs,
to be processed by the MDRS scientific staff sharing
limited devices and working spaces during a fixed-
length stay at the station. The scheduling problem



variant we study being very specific to our MDRS case
study, its modeling will probably significantly differ
from the literature. Some of the models we will inves-
tigate are deterministic, but the unpredictable nature
of the operational environment motivates the need of
robust models, leveraging the stochastic knowledge to
take decisions that maximize the probability of suc-
cess. We will design both optimal and heuristic solv-
ing methods for the deterministic problem, and a ex-
tended heuristic approach for the stochastic variant
of our problem. Using experimental, realistic bench-
marks generated in light of real observations during
two weeks as part of a scientific staff operating in
the MDRS, we will finally compare the different ap-
proaches proposed.

This report is organized as follows. In section 2 we
further discuss the combinatorial problem faced in our
case study. Section 3 describes, steps by steps, the
different planned milestones towards the realization of
the study. Conclusions and perspectives are discussed
in section 4.

2 The MDRS case study

The Mars Desert Research Station (MDRS), owned
and operated by the Mars Society, is a full-scale ana-
log facility in Utah that supports Earth-based research
in pursuit of the technology, operations, and science
required for human space exploration.1

The scientific staff will be constituted of 8 crew
member, and the whole mission will lasts fifteen days.
When arriving at MDRS, each crew member will
conduct its own scientific study, involving different
fields such as medicine, biology, geospatial engineering,
building engineering, chemistry and particle physics.

Whereas each crew member has independent goals,
the whole mission will be considered as a success only
in the case where all the projects are completed. In-
teraction is likely to appear in the scientific staff, as
some manipulations can be performed by more than
one person. In addition, some of the projects contain
optional (prioritized) parts.

In this application, we study the effects of job pro-
cessing time uncertainty in the robustness (i.e. relia-
bility) of operation scheduling in an environment such
as MDRS. Thanks to information gathered from the
staff members and real data collected during the mon-
itoring of the mission, we will identify stochastic pat-
terns about the job processing times. The stochastic
patterns can then be exploited for generating realistic
benchmarks of variable sizes.

1Source: http://mdrs.marssociety.org

Figure 2: Plan of the Mars Desert Research Station
habitat. It is divided in two floors, and its diameter is
of 8 meters. Source: http://mdrs.marssociety.org

3 Experimental plan

This section summarizes the different intermediate
steps that constitutes the case study.

3.1 Before landing

1. Requirement analysis: Maybe the most impor-
tant part of the project consists in collecting and
compiling an exhaustive list of requirements from
the scientific staff involved in the mission. When
arriving at MDRS, each crew member carrying its
own project, from different scientific fields.

In addition, a number of daily logistic operations
will have to be shared amongst the crew members.
Figure 2 shows a plan of the MDRS habitat. In a
constrained environment with limited space, tools
and devices, even simple activities such as cooking
or cleaning may require a significant amount of
time (previous inhabitants of the station estimate
cooking time at about 2 man-hours).

The very first objective will therefore be to col-
lect the a priori data from the scientific staff, and
compile a full dataset containing:

(a) The list of available devices (machines) to-
gether with their respective constraints (e.g.
time outside the pressurized environment is
limited to 3 hours per day and per person —
so are the use of related machines, such as
the rovers);

(b) The overall project of each scientific will be
segmented in a set of jobs to be processed at
MDRS, each of these coming with:

i. type of machine required by the job;

ii. required helping people, if needed;



iii. precedence constraints, if any;

iv. the estimated processing time of the job;

v. a level of confidence on the estimation;

vi. the job priority.

Some jobs can only to be processed once
other specific jobs have been achieved (prece-
dence constraints). Each job is given a pri-
ority by its owner, from 1 (optional) to 5
(mandatory, fail of the mission otherwise).

(c) A list of daily jobs shared between crew
members with the corresponding machine re-
quirements, processing time estimations and
confidence levels.

The purpose of the a priori dataset will be to de-
sign the model and thus, the adequate solving al-
gorithms.

2. Deterministic model and algorithms: The
deterministic optimization problem associated to
our case study can be formulated as the following
integer program:

z∗ = max
x

f(x)

s.t. x ∈ X,

where X represents the set of linear inequalities,
or constraints, that define our complex job-shop
scheduling problem at MDRS. In particular, this
solution space is meanly based on the whole set
of mandatory jobs, their constraints, and the pro-
cessing time estimations which we take here (in
the deterministic model) as granted. Objective
function f(x) is a weighted sum reflecting the
amount of valuable optional task processed in so-
lution x, in addition to the mandatory jobs.

We will use the Constraint Programming [7]
paradigm to solve this deterministic problem.
Constraint programming dissociates the modeling
part of the problem from the systematic explo-
ration of the solution tree:

SOLV E = MODEL + SEARCH

Whilst constraint programming (CP) allows a
very descriptive and easy way to model a prob-
lem, modern CP solvers come with efficient search
algorithms out of the box. The user simply pro-
vides a description of the problem (the model) in a
language that the solver understands. The solver
then triggers the adequate algorithms in order to
search the solution space, and eventually come up
with a provably optimal solution.

A heuristic solving method will also be designed.
Provided the CP model of the problem, a sim-
ple heuristic solving method is the one easily ob-
tained by considering the so-called Large Neigh-
borhood Search (LNS, [8]) approach. LNS is based
on the Local Search paradigm. From a feasible
(non-optimal) initial solution x, LNS obtains a
different, neighboring solution x′ by first selecting
a subset of the decision variables in x to be fixed,
and re-optimizing on the remaining variables only.
By iteratively repeating the operation, we explore
the solution space by jumping efficiently from one
solution to another whilst never degrading the ob-
jective function. Eventually, the process can be
stopped whenever the solution looks near-optimal
enough.

3. A priori planning: The last operation before
flying to MDRS will obviously be to compute a
(near-)optimal solution to be following by the sci-
entific staff as soon as the mission starts in Utah.
Provided that such a priori solution, the crew will
be given the operational planning of the whole
stay at MDRS, stating which task each crew mem-
ber should perform (for either shared tasks or its
own research project) during each of the fifteen
days of the mission.

3.2 Operations at MDRS

• Operation monitoring: During the entire du-
ration of the mission, we will monitor and record
everything related to the uncertainty in the job
processing times in order to improve the quality
of the a priori estimations. Furthermore, the re-
quirement analysis (described at phase 3.1-1) will
be either validated or improved according to ob-
servation.

• Daily re-scheduling: As executive officer of the
crew, my job will be to provide the staff everyday
with an optimal planning. Therefore, it is very
likely that the data and/or the model will have to
be modified in a regular basis in order to take ran-
dom events realizations into account. Each time
the data or the model changes, a new solution
(planning) will be computed directly at MDRS.

3.3 Post analysis

1. Stochastic robust model and solution
method; The stochastic problem of finding ro-
bust solutions will can be formulated as a chance-
constrained program (CCP, see [3]). Let ξ be the
random vector describing the uncertainty in our
problem data. We then have one random variable



ξi ∈ ξ per stochastic job processing time, the dis-
tribution of which being approximated based on
experience at MDRS (steps 3.1-1 and 3.2-(a)).
Let S be the set of distinct realizations of ξ hav-
ing a positive probability. Namely, S is the set of
all possible scenarios.

If α ∈ [0, 1] is the desired level of robustness that
is, the required probability that the solution x
remains feasible, the CCP can be formulated as:

z∗ = max
x

f(x)

s.t.
∑

s∈W (x)

Pr(ξ = s) ≥ α

W (x) = {s : x ∈ Xs, s ∈ S},

where Xs defines the solution space of our prob-
lem under specific scenario s ∈ S. W (x) is the set
of scenarios in which a priori solution x remains
feasible. In other words, the optimal solution x∗

of cost z∗ is the one that maximizes f(x) whilst
maintaining a probability α of remaining feasible.

We argue that the term∑
s∈W (x)

Pr(ξ = s)

can be efficiently computed (in pseudo-
polynomial time). An a priori solution x is
actually a set of sequences of scheduled jobs,
one sequence per crew member. The key idea is
to think at this set of sequences as of a set of
vehicle routes, where each job is a customer in
the Vehicle Routing Problem with Time Win-
dows (VRPTW). In particular, in our case the
travel times to (or equivalently service times at)
each customer correspond to the job processing
times and are stochastic. Therefore, any of the
following papers [5, 6, 2] that propose a solution
method for the VRPTW with Stochastic Travel
Times (or service times) describes, provided some
minor adaptations, an pseudo-efficient way to
compute

∑
s∈W (x) Pr(ξ = s).

The solving method will be adapted from the LNS
algorithm used for the deterministic problem, by
simply using the computation of the feasibility
likelihood shown above as criterion for selecting
robust solutions during the local search process,
as shown at line 5 of Algorithm 1. The algorithm
assumes the existence of a solver O for the deter-
ministic problem.

2. Benchmark generation: The data collected at
step 3.1-1 will be exploited in order to create real-
istic benchmarks to compare the robustness (and

Algorithm 1: LNS based local search method to
seek for robust a priori solutions

1 Let x be an initial a priori solution such that
x ∈ X.

2 while some stopping criterion is not met do
3 Select a random subset V of problem decision

variables.
4 Solve the reduced deterministic optimization

problem obtained by fixing values of V
according to current values in x:

x′ ← O(V, x)

5 if
∑

s∈W (x′) Pr(ξ = s) ≥ α and x′ ≥ f(x∗)

then
6 set x∗ to x′

7 return the best a priori solution x∗ found

Figure 3: Stochasticity in the job processing times.
Cell (i, j) gives the probability that job i actually re-
quires a processing time of j minutes.

hence the reliability) of solutions obtained using
the different formulations.

In particular, we will try to best represent the
uncertainty in the job processing times, using es-
timations provided by the scientific staff. We will
draw a map of the stochastic knowledge from
these estimations together with the confidence
levels indicated by the staff members, and the
observations made during the mission. This is
illustrated in Figure 3.

Additional benchmarks of varying size (size of the
scientific staff, duration of the mission, number of
jobs and machines) will then be generated, based
on the real benchmark representing our mission.
Those additional benchmarks will be useful to
study how value of robustness varies with the size
of the mission.

3. Experimental study: Using the real and the
generated benchmarks, we will compare the be-
havior of the solutions one obtains using either a
deterministic or a stochastic robust formulation



when planning the operations, in the hope of em-
phasize the superiority of one formulation over the
other.

4 Conclusions and perspectives

In this report, we exposed the experimental plan that
will be followed during our study on robust schedul-
ing of scientific operations at MDRS. The combina-
torial problem as been informally described, and we
discussed the solving methods that will be considered.
The implementation of the experimental setting is dis-
cussed as well.

At early current time of writing, most of the tech-
nical aspects of the project are still to be defined, as
these mainly depend on the requirement analysis on
the scientific staff. Nonetheless the deterministic part
of our study relies on well-studied technologies and
paradigms such as Constraint Programming [7] and
Large Neighborhood Search [8]. The stochastic mod-
els and algorithms will have to be defined, mainly de-
pending on the key observations to be made during
the mission at MDRS.

We are confident about the scientific value of the
data collected during the mission and the potential
contributions of models, algorithms and final empir-
ical analysis. Eventually, our goal is to publish the
study in an international scientific conference on AI.
Collaborators and sponsors will be given an thankful
acknowledgment section.
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